Report from the JS TG

4th sPHENIX Collaboration Meeting BNL, June 13th,2017

Rosi Reed

Dennis Perepelitsa

Outline

- Simulation update
- We've made jet background subtraction great again!
- Performance Plots
 - Jets
 - Photons
 - Associated Note is in Progress
- Selected observables

Detector Updates in Simulation

- Major update to the EMCal simulation
 - Description is at:
 - https://github.com/sPHENIX-Collaboration/ coresoftware/pull/300
 - Introduced tilt of the 2x2-tower SPACAL modules
 - Included features learned from 2016 test beam data
 - Other key construction features (see Anne's talk)
- Much work has been done on the tracking simulation (see Tony's talk)
 - Key for the "structure" part of Jet Structure
 - Will be incorporated in the future now that the configuration is settled

- A key component of developing robust jet observables in HI collisions is the background subtraction method
 - Correction to the JES → Necessary for unfolding
 - Many different algorithms on the market
 - Can depend on the observable
 - Can reduce the contribution from combinatorial jets
- Note: Jet structure measurements can also require background subtraction to their components -> Can be different than the JES correction

JES Correction — Toy Study

ρ median method (ALICE/STAR)

- PYTHIA jets $15 < p_{T,hat} < 25$ GeV "Background" thrown with a Boltzmann distribution
- Subtraction removes most of the offset in the JES
 - Observables still require unfolding

- For sPHENIX MIE, subtraction routine from arxiv:1203.1353 was used
 - Lost in the separation of PHENIX and sPHENIX software
 - Healthy development of sPHENIX code meant this required a rewrite from scratch
 - Other background subtraction methods will be incorporated > Important for continuity
- First results with current geometry and reinstated background subtraction routine look promising

Iterative Atlas arxiv:1203.1353

- First results look promising
- We are continuing to work on this → 2 features not yet implemented:
 - Refinement of exclusion region definition in first iteration step
 - flow estimation / modulation
 - HIJING events used in the simulations shown here did not have flow modulation
 - However, we encourage people to test it out and send comments!

- Enabled by setting the do_Hljetreco flag in the master macro
 - Creates 0.1x0.1-towerized version of CEMC
 - Requires creation of towers from all 3 calorimeters subsystems
 - Requires default jet reconstruction
 - Estimates UE contribution to towers in η =0.1 rings
 - Separate for each layer
 - Writes info to node tree
 - Creates new UE-subtracted tower containers
- Jet reconstruction has been modified to handle negative-E tower inputs

- To quantify the effect required realistic simulated background events
 - Single particle+HIJING
 - $V_z = 0$
 - $b=0-4 \text{ fm } (\sim 0.7\%)$
 - /sphenix/data/data02/review_2017-08-02/sHijing/fm_0-4/
 - Note: |Vz| < 10 cm data can be found at:</p>
 - /sphenix/data/data02/review_2017-08-02/vtx_z_10

- Jets/γ-jet events with reasonable kinematics are embedded into the background
 - HepMC events are at /sphenix/user/dvp/gen/
 - 4 sets hard-scattering Pythia8 events
 - Filtered at the truth-jet level

• Used in the p_T range where there is an unbiased

falling p_T spectrum

Look at JES/JER

Extend to Calo basedObservables

Jet Response

- Jet energy Scale (JES)
 - Increased by background
 - Subtraction method necessary
 - Unfolding requires well behaved Response Matrix

- Background smears reconstructed momentum
 - Increases JER
 - Depends on R and p_T
- Can decrease reconstruction efficiency

Reconstruction Efficiency

Larger jets and lower p_T jets can be obscured by the fluctuating background

- Truth jets are association with closest reco jet within $\Delta R < R^{anti-kT}$
 - If this fails, the jet is not reconstructed

Jet Energy Scale

- For high momentum jets, the JES is similar in pp and AA
- Defect in the JES at low-p_T in AA → suspect cause is the crude exclusion seed selection
 - Low-p_⊤ (hard scattering) jets are included in the estimate of the background > over subtracting

Mean value of:

p_{T,reco} / p_{T,truth}
Determined by Gaussian fit
Uses default simulations

- - Linear tower calibration → assumed sampling fractions
 - no additional jet-level calibration

Jet Energy Resolution

- Width of p_{T,reco} / p_{T,truth} distribution
 - Determined by Gaussian fit

- In HI collisions JER increases with increasing R
- Rapidly increases for p_{T,truth} ~ average background

Jet Energy Resolution

Despite all the changes in the software and the simulation geometry, results are in good agreement!! ©

Note: JES is nonunity

- Unlike the MIE
- Correction
 would cause
 the JER to
 look even
 more similar

16

Dijet asymmetry A_J

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Demonstrates the magnitude of the detector and UE effects for an example observable

Photon Performance

- γ-jet analyses are a key JS physics probe
- γ grants
 external handle
 on initial hard
 scattering

Changes in the EMCal geometry could effect photon performance

HI Clusterizers are under investigation

γ Reconstruction with Updated Geometry

Single Particle

- New EMCal geometry did not change the response appreciably
 - New geometry improved the problem of low E

Cut on low E clusters with reco/truth < 0.65

New vs Old Geometry

- Geometry tilt improves the low low E channeling problem
 - Still some low E clusters → remainder consistent with punch through?
- E reco distributions for 35-40 GeV Truth γ

γ Reconstruction in AA

- First γ embedding results with new geometry
 - Clustering algorithms used out of the box, some tuning will be necessary

Jet-to-Photon p_T Balance

$$X_{J\gamma} = \frac{p_T^{\gamma}}{p_T^{\gamma}}$$

- X_{Jγ} allows a direct comparison between LHC and RHIC
- Predominately quark jets
- Allows a direction connection between pp and AA
 - Repeat study in AA! Stay tuned!!

Rosi Reed - sPHENIX Collaboration Meeting - June 2017

FF measurements

 Jet Subtraction routine will allow studies in HI collisions

- With the improvements in EMCal and Tracking simulation we can revisit these observables
- Needed the tracking to stabilize
 - Will work closely with Sims team and other TGs

Conclusions/Outlook

- Iterative Atlas-style background subtraction routine has been implemented (few features TBD)
 - ALICE-style background subtraction routine in process
 - Jet median approach → Different philosophy
 - Useful to have multiple choices for systematics
- First jet performance plots in pp and AA with the new EMCal Geometry
 - Replace plots from the MIE
- Photon clustering algorithms applied to new EMCal geometry
 - Some tuning and work will be done over the summer
- Creation of sPhenix Note and additional plots will be completed for necessary reviews

Conclusions/Outlook

Extension of high p_T observables to LHC energies is necessary to fully realize jets as probes of the QGP

 See Jamie's talk for trigger details

- Special thanks for all the resources/help/plots to:
 - Erin Bossard (University of Colorado Boulder)
 - Joe Osborn (University of Michigan)
 - Justin Frantz and the Ohio University Group
 - Dennis Perepelitsa (University of Colorado Boulder)
- Software is shaping up, we'd love to have some volunteers to help generate performance plots now that key components are in place!

25